Comminution modelling
in the context of
Integrated Process Prediction

Malcolm Powell
JKMRC
Integrated process prediction

Predicting the performance of the whole mining process is surely the holy grail of predictive simulation
Objective

Predict the response of the processing chain mining → concentration to changes in the ore type
Application

Greenfields design
• processing options to optimise the overall mine performance
• constraints and aspirations of the greater community
• environment

expansion and optimisation
• Changes in economic drivers
• Changes in ore types
• on-line control – predictive reaction to ongoing changes in ore processing types
Know the rock

- ore characteristics based on in-situ rock properties
- prediction of fragmentation
- predict and track progressive mineral liberation
- response to separation processes as a function of mineralogical properties.
Keynote Objective

• value of this integrated approach
• Challenges
• technology and capability required
• Addressing as a comminution community
DRIVERS

Energy

Massive low-grade ore bodies

Increasing demand

Commination 36±10% mining energy

Ballantyne 2011

Historical Australian Ore Grades

Gold

Copper

Ballantyne 2011
Challenges

- Improved efficiency of process equipment
 - Halve energy use?

Transform processing capability

- Grades at least halving
- Energy intensity of production does not decrease
Future approach

Circuits designed to respond to variable:

- grade
- Competence
- feed size distribution
- liberation size

by processing to varying:

- target required grind size
- recovery options
- cut-off grades

Considerable, worthwhile challenge to ensure sustainability of our industry
Integrated Process knowledge

ipk-comm16-gilt570ada0c\Prezi.exe

INTEGRATED PROCESS KNOWLEDGE

All about the rock
It’s all about the rock

Degree of reduction for high probability of recovery

• Mineral grain size
• Mineral associations
• Texture – intergrowth, veining, etc.
• Mechanical texture
 the energy required and optimal input mechanism
• Recovery process or processes
 – Surface
 – Volume
 – porosity dependent
 – Selectivity
Conduct the minimum degree of breakage required to permit recovery of the valuable minerals
Optimal processing route

- Staged processing
- early and progressive removal of gangue
- Minimise the material to be further processed
- Recovery of values is last stage and objective
The upside of Progressive upgrade

- Large removal in one step 40%
 - Lower recovery
 - Higher risk of erroneous removal

- Staged removal
 - Improved discrimination
 - High recovery per stage
 - Larger energy saving at fine end
 - Greater gangue rejection
 - High overall recovery
The rock particles

To successfully upgrade

• Important to understand the changing distributions of particle mineralogy

• Links to ore body knowledge
Quantitative evaluation of the SC

- Selective Commination Index SZ

\[Q_{3,x} = \sum_{i=1}^{x} M_i \]

Selectivity S_P

\[SZ = S_P - S_F \]
Designer products for recovery

Higher recovery
50% energy (based on SSE)
Designer products for staged upgrade

Upgrade 0.4 removal of gangue
0.4 x 50% = 20% removal = 80% energy and processing downstream
0.4 x 90% = 36%
64%
16% energy and processing saving

![Diagram showing current, improved, and optimal sizes with removal percentages and energy savings.](image-url)
Process performance

Measurement directly influences process choice or changes

- Define target
- Then efficiency as function (target)
- $\sum \text{circuit} \rightarrow \text{entire circuit}$
<table>
<thead>
<tr>
<th>stage</th>
<th>Future integrated process</th>
</tr>
</thead>
</table>
| Rock in situ – the ore body | Measure mineral associations in situ
| | Map into ore-body based on geological structure |
| mining | Plan according to physical constraints and processing needs
| | First stage of processing
| | grade selection, fineness of fragmentation to suit immediate processing |
| Transport | Second stage of processing
| | in-pit conveying to different destinations for waste, high grade, low grade, leach, etc. |
| Comminution | Break rock particles just sufficiently for the next stage of upgrade |
| classification | Efficiently select coarse particles and recycle for further comminution. |
| Recovery | Reject particles that are gangue |
| Staged recovery | Send to the next stage of comminution. |
| | Final stage targets recovery and grade. |
| Waste disposal | according to size, AFM, toxic or benign, remaining grade, potential future ore body |
| Water recycle | Recover 99% water from early stages
| | final tailings (with lower slimes)
| | >80% water recovery through thickening, minimum water pumped to tailings dam
| | Fresh water < 5% of process water. |
Ore body information

- Size specific Energy (SSE) - linear & additive
- Impact strength
- Abradability & product size
- Texture parameters related to liberation size
- Grade deportment factor - grade by size in blasted rock
- Clay
- Process-specific recovery indicators
 - floatability, magnetic susceptibility, leach response, etc.
- Orebody-specific relationship to parameters
 - Core logging data - alteration, silica content, ……
- Some, but not all, current stored data
 - grades of key minerals and deleterious elements, ………
Fundamentals of breakage

Mineral liberation from breakage tests

strength fn. mineralogy
primary rock properties

- mineral association
- mineral strengths
- rock strengths in these mineral associations
- Mineralogical liberation

- in-situ rock
 - mapped back into the ore body
 - carried along the process chain
 - calculating processing properties at every stage

- common rock language
 - Ore body – mining – comminution – recovery - final products, waste water recovery
The vision

- Shift our paradigm of processing costs and effectiveness
- Integrated processing prediction approach
- Multi-stages of progressive upgrade in a usable circuit
- Flexible processing utilises natural variability of ore

JKMRC and GCC built many base tools launching as comprehensive research thrust Significant uplift to the mining industry