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HIGHLIGHTS 

 

• Applicability of SBS on various lithium pegmatite ores  

• Improved energy and water usage by coarse gangue rejection with SBS 

• Reduction on waste generation with by-products concentration with SBS 

 

ABSTRACT 

 

The clean energy transition presents a direct impact on the increasing demand for critical 

metals, amongst these is lithium. At the same time the minerals industry faces the need 

for improvement, and must meet growing sustainability targets and evolving standards of 

ESG policies. Therefore, it is necessary to develop process routes that make it possible to 

address the aforementioned demands. The present work demonstrates the applicability of 

sensor based sorting (SBS) technology for the processing of lithium pegmatite ores. For 

this, a test methodology commonly used in the initial stages of evaluation, which provides 

a better understanding of the separability between the most common lithologies in lithium 

pegmatite ores, is presented. This work offers a framework on which to evaluate the 

sortability of lithium pegmatite ores with a focus on achieving ESG goals. Using a multi-

sensor platform approach provides flexible solutions to decrease the carbon footprint of 

existing processing routes.  

 

KEYWORDS: ESG, Multi-sensor sorting, Lithium, Sustainability, Critical Minerals, 

Decarbonization.  
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1. INTRODUCTION 

The global energy transition places a higher demand on the mining and minerals 

processing industry. For instance, the transition by automotive manufacturers to electric 

vehicles (EV’s) is associated with an almost six-fold higher requirement on minerals 

inputs when compared with conventional vehicles (IEA 2021). Similarly, off-shore wind 

generation requirements command nearly nine times the mineral input compared to 

current gas-fired power stations (Michaux 2021; IEA 2021). Considering these growing 

demands on the mining and minerals processing industry, significant efforts need to be 

made to support this expanding sector in a sustainable and environmentally conscious 

way.  

 

Major mining companies are aligning environmental, social and governance (ESG) 

commitments to their portfolios as they address the sustainability and social impact of 

their investments. In this context, stakeholders demand more ESG-oriented policies. The 

way mining organisations allocate the capital expenditure across their assets could have 

a decisive effect on their competitive advantage over the next decade. According to Stoch 

and Desai (2022), miners need to convince their investors on how they are positioning 

their assets for the long term.  

 

According to the Deloitte report authored by Davidse et al., 2016, energy is one of the 

biggest expenses for mining companies, constituting approximately 30% of total cash 

operating costs. The most direct and impactful portfolio is one that focuses on energy-

management related projects that have clear economic returns. At the same time, the 

reduced grade of the available mineral resources demand for processing more tons of 

material. This results in a significant increases on the total energy consumption. The 

minerals industry is currently tackling this challenge by developing new comminution 

technologies, improving process controls, and also implementing waste rock removal at 

coarser grain sizes. Coarse gangue rejection is also known as preconcentration and 

consists on of eliminating material without valuable metal content, prior to high energy 

intensity grinding stages. The preconcentration stage can be implemented in the form of 

many different technologies, which can be selected based on the technology’s 

capabilities, orebody suitability and economic viability (Valery, et al., 2020).  Ballantyne, 
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et al. (2018) assessed the energy efficiency of preconcentration through SBS for a gold 

and chromite ore, thus concluding that energy savings are in the order of 6% to 11%. 

Esteves, et al. (2023) proposed the evaluation of SBS for the preconcentration of a 

polymetalic ore, thus resulting in a reduction of: 44% on specific water usage (m3/t), 34% 

on specific energy consumption (kWh/t) and 43% on fine waste generation.  

 

In addition to the energy usage, the waste generation is also an important challenge in 

mining. Considering the number of catastrophic tailings dam failures experienced in 

recent decades, the risks are not only environmental but also increasingly deadly (WISE 

2023). In this sense, Valenta et al., 2023 considered several strategies aimed at improving 

resource efficiency, whilst reducing mine waste generation. Reprocessing, 

desulphurisation, dry stacking, preconcentration, sand co-production and in-situ recovery 

are pointed as alternatives to mitigate the waste impacts while minimizing the disposal 

hazards. Also highlighted in their study is importance of understanding the site-specific 

characteristics when defining suitable technologies and/or alternatives at different mining 

operations. 

 

Water is rapidly becoming a scarce resource in many parts of the world. It will be 

important to develop processes that require less water and reduce the amount of fine 

slimes waste material which is store in tailings dams.   

 

Existing and future mining projects will have to address ESG targets which will require 

implementing new flowsheet designs and new or improved technologies to develop 

Climate-Smart processes. 

 

2. BACKGROUND 

As one of the most critical metals to the EV market, the demand for lithium is growing 

exponentially. This paper focuses on preconcentration techniques for lithium ores which 

will impact portions of ESG aspects.  

 

Lithium is primarily found in two major sources, lithium brines and hard rock pegmatite 

orebodies (Drobe 2020). The largest lithium deposits are encountered in brine sources, 
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which are basically saltwater deposits in the form of lakes, salars and geothermal brines 

mainly encountered in Chile, Argentina, Bolivia, USA, and China (Morh et al., 2012). 

Although lithium brine sources correspond to approximately 87% of lithium reserves, it 

is suggested that the environmental, safety risks and occupational health hazards 

associated with lithium brine extraction can be much larger than for lithium bearing 

pegmatite ores (Agusdinata, et al., 2018). In addition to this, it is also suggested that salars 

are paleolakes structures with rich microbiological ecologies that contains memories of 

past life on Earth, which could be disrupted by the intensity of mining activities (Bonelli 

& Dorador, 2021).  

 

Alternatively, over the past six to eight years there has been a marked increase in interest 

in hard rock lithium deposits. The lithium minerals are usually encountered in pegmatite 

deposits which can present large mineralogical variations. More than one hundred 

minerals are listed from the Tango Pegmatite deposit, including native elements, 

sulphides, oxides, phosphates, carbonates, borates, and silicates (Garret, 2004). Some of 

the lithium minerals encountered include; spodumene, lepidolite, petalite, cookeite, 

elbaite, rossmanite, holmquistite and others, while accompanying minerals and rocks 

types include basalt-gabbro, mica, quartz, feldspar, albite, muscovite, calcite, schist and 

dolomite (Garret, 2004). This vast diversity in lithium pegmatite mineralised deposits, 

will require different ore-specific concentration flow sheets. 

 

This study only considers Li-pegmatite ores within the context of mineral beneficiation 

(as explained in Tadesse et al., 2019), not lithium extraction or the formation of lithium 

compounds (e.g., carbonate, sulphate or hydroxide) (as explained in Gao et al., 2023). 

Conventional mineral beneficiation techniques for Li-pegmatite ores include dense 

medium separation (DMS), froth flotation and magnetic separation (Tadesse et al., 2019; 

Kundu et al., 2023). Both DMS and froth flotation require the introduction of process 

water as a medium to facilitate the separation. In almost all instances where process water 

is introduced, tailings, or some form of fines slurry wastes are generated. DMS and froth 

flotation are applied on relatively fine feed material (e.g., ≤4mm being typical for Li-

pegmatite ores). Sensor based sorting (SBS), as implemented in various applications 

(Robben and Wotruba, 2020), presents the opportunity to reject barren waste and/or very 
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low-grade lithium material prior to size reduction for DMS, froth flotation and magnetic 

separation.  

 

In this sense, Äijälä (2018) proposed a multi sensor approach, including color, NIR, laser 

and XRT sensors for the estimation of a sorting index that represents an estimation of 

rock dilution for lithium pegmatite ores. The test was performed at bench scale and a SBS 

test program was recommended. More recently, Filippov, et al.,2022, proposed the 

evaluation of optical sorting for the preconcentration of a lithium pegmatite ore in 

Portugal, thus concluding that the coarse-grain texture of the lepidolite allows for gangue 

liberation at coarse sizes. It was suggested that the optical sorting also allows for the 

production of a feldpspar-quartz product with suitable characteristics for the ceramic 

industry. Esteves, et al., 2022, proposed a multi sensor approach for different lithium 

pegmatite deposits encountered in Brazil. Although it was concluded that a combination 

of laser, XRT and color sensors could be applied to separate spodumene and petalite, the 

possible separation results were not evaluated in terms of grades and recoveries. In 

relation to this multi sensor approach, Peukert, et al., 2022, also indicated that greater 

sensor fusion offers the potential for an improved ore classification and sorting efficiency. 

 

3. OBJECTIVE 

A diverse selection of lithium pegmetite ore samples from different deposits around the 

world were provided for this study. Since numerous case studies featuring SBS have been 

presented in literature for other minerals, the authors believed it would be pertinent to 

present the methodologies developed to assess the amenability of lithium pegmatite ores 

to SBS. It is also important to demonstrate that different sensor technologies are required 

to treat different ore bodies, due to the diverse nature of lithium pegmatite minerals. 

Experience has shown that a “one size fits all” approach is not suitable for all lithium ore 

types. This paper also aims to demonstrates the opportunity to remove a significant 

portion of coarse waste material SBS. This will result in energy, water and therefore cost 

savings which could incentivize mining companies to consider such alternatives. 
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4. MATERIALS AND METHODS 

Twelve tonnes of ores originating from different lithium pegmatite deposits across three 

continents, were submitted for Amenability Testing. Although all deposits are 

characterized as lithium pegmatite orebodies, they represent different lithium occurrences 

and mineralization that can be encountered in various regions across the globe. In this 

sense, the lithium bearing minerals do vary, as do the main contaminates (gangue) 

present. By testing different mineral compositions, it is possible to obtain a broad 

understanding of how different sensor technologies can be utilized to process lithium 

pegmatite ores, in a general and global perspective. 

 

Spodumene, cookeite, lepidolite and petalite are the main lithium bearing minerals 

considered in this study. The other lithologies commonly associated with lithium deposits 

are described in Table 1. 

Table 1 - Properties of minerals occurring in lithium pegmatite ore 
Mineral / Rock Description Specific Density Li2O (%) theoretical 

Feldspar 
X (Si, Al)4 O8 

X = K, Na Ca 
2,5 to 2,8  

Quartz SiO2 2,6 to 2,7  

Schist Metaphorphic 2,7 to 3,2  

Mica 

X2Y4–6Z8O20(OH, F)4 

X= K, Na or Ca 

Y = Al, Mg or Fe 
Z = Si or Al 

2,8 to 3  

Amphibolite Metamorphic 2,9 to 3,6  

Gabbro Igneous 2,7 to 3,3  

Spodumene Li Al(Si2O6) 3 to 3,2 8 

Petalite Li Al(Si4O10) 2,3 to 2,5 4,9 

Cookeite LiAl5Si3O10(OH)8 2.58 to 2.69 2,86 

Lepidolite K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2 2.8–2.9 7,7 

4.1.SBS: AMENABILITY TEST 

The Amenability Test (AT) is performed as an initial evaluation for determining the 

sorting applicability. The test requires calibration samples that are used for 

characterisation and settings development. The calibration samples are scanned with 

different sensors and the sensor response is then used to develop a separation setting for 

the application. The setting and sensor response can be used to simulate materials 
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separation to obtain an initial assessment of the sorting task. The test procedure is 

summarized in Figure 1. 

 

 

Figure 1 - Flowsheet of Amenability Test (AT) methodology 

 

The first stage for the test is to prepare the samples, which can be defined as Calibration 

samples (CS). The setting adequacy relies on the quality of the initial assessment of the 

CS, which consists of groups of different rocks according to pre-determined/known 

characteristics, such as grade range or lithology. The table below provides some examples 

of calibration samples specifications. The size fractions for the calibration samples should 

be in accordance with the size ranges of material to be sorted. The amount of CS can be 

defined in terms of a minimum amount of mass or quantity of particles.  

Table 2 – Calibration samples (CS) examples 

CS examples Size fraction Amount of rocks 

High-grade sulphides - 25mm +10mm 10kg / 50 pieces 

Low-grade - 25mm +10mm 10kg/ 50 pieces 

Waste rock type 1 e.g. schist -75mm+25mm 30kg/ 50 pieces 

Waste rock type 2 e.g. andesite -75mm+25mm 30kg/ 50 pieces 

 

Table 2 shows an example of CS for a copper project. In this example, the copper 

mineralization consists of chalcopyrite and the high-grade samples are mainly composed 

of massive sulphides. The medium grade material is chalcopyrite inclusions entrained in 

gangue material, the low-grade material is very disseminated sulphides and, the, waste 

material is mostly gangue. The samples are generally handpicked by a geologist, and thus, 

all the individual particles provide similar characteristics according to the categorization. 

 

The next test stage consists of scanning the CS with multiple sensor technologies. For the 

proper evaluation of surface characteristics, it might may be necessary to provide proper 

surface preparation of the samples, which can include washing prior to scanning. The 

sensor responses are used to create a customized sorting setting, as defined by the test 

targets. Complex separation applications require more than one sensor to identify and 
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distinguish between different minerals or rock types: For example, XRT can identify the 

atomic density of dense sulphide minerals locked within a rock, and laser reflection 

properties are utilised to identify quartz. This quartz-vein gold sulphide type deposit can 

thus be effectively sorted by utilising the XRT/laser sensor combination. However, not 

all applications may have this multi-sensor requirement, as this study will show. The 

setting is used to simulate what would be the separation decision for each calibration 

group. Figure 2 shows the separation simulation for the different copper calibration 

samples presented in Table 2. The x axis represents a threshold for the sensor and the y 

axis represents the material separability. The analysis can be performed for different 

sensor selections. In the presented example, by selecting a threshold of 0.4, the following 

materials are recovered: 90% of the high grade, 39% of the mid grade, 14% of the low 

grade and less than 1% of waste. This could be used as an operational point with a focus 

on material upgrade, in this case favouring the recovery of high grade material while 

minimizing low grade and waste material. When increasing the threshold, (moving from 

left to right) the recovery begins to increase. Conversely, by decreasing the threshold 

(moving from right to left) the upgrade is favoured over recovery. In summary, the results 

generated by AT can be used to evaluate separability of different materials, such as to 

select the best sensor/s for the separation.  

 

Figure 2 - Separation setting example for AT 

4.2. SENSOR TECHNOLOGIES 

Various different sensors have been applied in SBS for ores over the years, these include 

transmissive technologies such as x-ray transmission (XRT), surface based technologies 

such as near infrared (NIR), x-ray fluorescence (XRF) and colour detection. This study 
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specifically examines the sensor technologies which have most recently been applied to 

the testing and commercial processing of lithium pegmatite ores.  

4.2.1. Near Infrared (NIR) spectroscopy for minerals  

Near infrared (NIR) is a spectroscopic technique which relies on the unique absorption of 

light in the NIR range by molecules. This absorption occurs as a result of the interaction 

between photons and the molecules of the specimens being observed. Specific 

wavelengths cause molecules to oscillate whilst the remaining radiation is reflected and 

detected by a camera unit and/or other detectors. This measured response provides a 

spectral signature which can uniquely identify the minerals responsible for the absorption 

(Robben 2010).   

 

Various authors define the NIR wavelength range differently nevertheless this range can 

be anywhere from 780nm – 2500nm (Clark 1999; Robben and Wotruba, 2010; Robben 

2017). Importantly are the known-absorption bands of various molecules within the 

wavelength range which make the identification of certain minerals possible. Figure 3 

shows two spectra of Li-Pegmatite specimens for Lepidolite and Muscovite.  

 

Figure 3: Spectral plot of muscovite (green) and lepidolite (blue) from a field 

spectrometer (Courtesy of Spectral evolution) 

 

We see the major behavioural bands where we expect the interaction of various molecules 

also shown in Figure 3. Not all minerals are active in the NIR wavelength range, iron (Fe) 

has shown to have strong absorption in the NIR range, which could provide some 

indication of why sulphides are difficult to detect within this range. However, minerals 
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that have some structural presence of H2O, OH-, NH4, and carbonates (CO3) have all 

demonstrated strong NIR detectability (Shanker, 2015).  

 

Differences between the two spectra at one or several points within these absorption bands 

allow for the mathematical distinction between the spectra and provide a separation 

criteria for sensor based sorting.  

4.2.2. Dual Energy X-Ray transmission (De-XRT) for minerals  

The working principle relies on the absorption of x-rays transmitted through objects. The 

density, molecular structure and thickness of the objects all contribute to whether the 

radiation is partially or completely absorbed. An x-ray source is located on one end of the 

object, whilst detectors also such as scintillators are located on the opposing end. Photons 

are radiated with a defined intensity and these travel through the material and are 

transmitted on the opposite side, where they are measured by the detectors. The difference 

between the incidental radiation and measured radiation is equal to the absorption, which 

allows conclusions about atomic density of the measured material to be made.  

 

The dual energy principle is used to compensate for differences in material thickness. A 

sandwich board detector provides the possibility to measure the transmitted radiation on 

two energy levels. Such a detector essentially consists of two detectors separated by a 

thin metal film, allowing for two measured values. High energy (HE) and Low energy 

(LE). Depending on the belt speed, and hardware selection of the x-ray tube and detectors, 

a certain pixel resolution can be achieved. The information from the scanned objects is 

translated to a scatterplot of pixels displayed on two axis. Each pixel consist of a HE 

transmission and LE transmission values which are plotted on a scatterplot similar to 

Figure 4.  

 

Figure 4 demonstrates the visual interpretation of De-XRT principle with two distinct 

curves showing high and a low dense materials. Heavy elements are expected on the upper 

curve, while elements with a lower densities can be found on the lower curve. In this 

diagram an area of interest is defined, which allows a mapping of every single pixel 

recorded and thereby allocation it to a material class for the purposes of sorting.  
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Figure 4: Visual interpretation of De-XRT where the x- and y-axis show percentage of 

transmitted radiation of the LE and HE detectors, respectively. 

 

In the context of this paper, material was scanned on a conveyor belt at 3m/s with the 

source (x-ray tube) located below the belt and the detectors above. The signal processing 

of each pixel is classified according to the area of interest defined in the DE-XRT diagram 

and on this bases each scanned object can then be displayed as a classified “False colour 

image” as shown in Figure 5.  

 

Figure 5: De-XRT signal interpretation 
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4.2.3. Visible light separation (VIS) techniques for minerals  

Optical colour sorters have been employed across various industries such as; food 

processing, recycling and minerals processing. The visible light spectrum is located 

between the ultra-violet (UV) and infrared (IR) range (400nm- 700nm). Similar to other 

surface based detection principles, colour sorting relies heavily on the cleanliness and 

visibility of the materials surface in order to provide an accurate measurement of the 

colour characteristics.  The principle works on the red green and blue (RGB) colour cube 

with three main primaries and an evolution of these as demonstrated in Figure 6. The 

model works by adding the three primary colours together to achieve different colours. 

Each measured pixel of a camera denotes a particular point on the cube and depending on 

that position a particular colour is recognised. The resolution of the detecting camera 

plays a critical role in determining how many different colours can be recognised.  

 

Figure 6: RBG colour cube (www.javatpoint.com/introduction-to-color-spaces) 

Light illuminates the surface whilst a camera placed at a specific position away from the 

object detects the various colours and plots these at various points on the RGB scale. 

Calibration samples are usually scanned in this case as well allowing for a reference scale 

to be developed, similar to the scale presented in Figure 2. This scale is generally used as 

a measurement against which sorting material is compared against. Depending on the 

colour scale for a specific group of material against the developed calibration scale, this 

material can either be “ejected” or “dropped” in the sorting operation, whilst the 

sensitivity can be adjusted in accordance with the threshold previously described for 

Figure 2.  

 

Laser scattering, brightness also fall within the context of VIS technologies however 

utilizing a visible laser line and camera detection system. Based on the surface 

http://www.javatpoint.com/introduction-to-color-spaces
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characteristics of certain minerals such as quartz, the translucent appearance of the 

crystalline structure allows for a significant scattering or dispersion of a laser beam when 

focused on its surface. This response can be detected by a camera/s and interpretated as a 

criteria for separation. Figure 7 shows 4 particles from a lithium pegmatite ore body with 

different degrees of surface oxidation and presence of quartz and feldspar.   

 

 

 

 

 

 

 

 

4.2.4. Effect of particle presentation 

In addition to the physical properties, particle presentation also has a direct effect on the 

sensor classification. While XRT is a transmissive technology, NIR, laser and colour 

camera only perform surface measurements of the particles.  

Figure 8 shows a rock with cookeite and petalite crystals. In the case of surface detection, 

it is important that the crystals are shown towards the direction of the sensor, so they can 

be seen and detectable.  

In the case of XRT, the surface characteristics are not a measurement parameter, since it 

is a transmissive detection. However, the direction of the particle can have an effect on 

the measurement. This can be better understand in terms of the x-y-z axis. By taking XRT 

scans across these different axis’ this can result in variations in the absorption patterns, 

depending on the structure of the mineralization. This is a result of the variations on the 

crystal position in terms of the direction of the measurement. Based on that, it can be 

concluded that particle presentation is directly affected by all sensors measurements and 

need to be properly take into account during test work. 

Figure 7: (LEFT) Colour camera image (MIDDLE) Laser width. (RIGHT) Laser brightness  
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Figure 8 –  Particle with cookeite and petalite large crystals 

 

5. RESULTS AND DISCUSSION 

CS from the different lithologies were submitted for AT. The samples were scanned using 

the following equipment: 

• Steinert KSS XT CLI: XRT, colour camera, laser and induction 

• Steinert KSS NR CLI: NIR, colour camera, laser and induction 

The AT was performed to generate separation settings that were later applied in a 

separation test. The sensors used were XRT, laser, colour and NIR. The obtained results 

are shown in the next sections. 

5.1.XRT + LASER + COLOUR 

Figure 9 shows the colour and XRT images for different lithologies commonly 

encountered in lithium pegmatite ores. For the XRT image, darker tones indicate a higher 

absorption pattern, while lighter colours are associated with lower absorption. The XRT 

absorption is related to the atomic density of the particles. In this sense, light colours 

should be associated with smaller atomic densities for a particle.  

The lithium minerals found are mainly composed by light elements, such as Li, Al and 

Si. In this sense, lighter shades are observed for the lithium minerals thus indicating a low 

absorption pattern. Although some of the lithium minerals present higher specific 

densities, such as spodumene, in the XRT pattern they are detected as low-density 

material. This is due to the fact that XRT measurement is based on atomic density, rather 

than the specific density.  
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Figure 9 - Images obtained through the colour sensors and XRT. 

 

The difference in the absorption pattern of the samples can finally be utilized to simulate 

the separability. The curves shown in Figure 10 show the separation curves obtained for 

XRT sensor. The x-axis indicates the separation criteria, which can be adjusted for greater 

recovery or purity. The y-axis indicates the separability of the samples, as a percentage. 

For example, an adjustment of the XRT threshold at 0.6 provides the rejection of 

approximately 100% of Feldspar, Schist, Mica, Amphibolite, Gabbro, and virtually no 

rejection of Quartz, Petalite, and Spodumene. Selecting this threshold, allows to generate 

a material with high content of petalite, spodumene and quartz, while other lithologies 

are almost completely rejected. 
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Figure 10 - Separation chart for XRT sensor. 

 

In a different approach, the colour camera is capable of detecting different shades among 

the samples. In addition to that, the laser detects both shape and surface properties. The 

laser and colour sensors were combined to generate a separation curve, shown in Figure 

11. The interpretation of the curve can be done on the same way as for the XRT. For 

example, a threshold of 0.95 results in a rejection of over 90% for Quartz, Feldspar, 

Schist, Amphibolite and Gabbro, with a rejection around 20% for Spodumene and 

Petalite, and virtually no rejection for Mica. 

 

Figure 11 - Separation chart for colour separation. 

 

This separation criteria can be adjusted to higher values, resulting in higher purity and 

lower recovery of lithium minerals. Conversely, the use of smaller thresholds results in 

higher recovery of lithium minerals with reduced contamination, especially by quartz. 

Based on the graphs evaluation, it can be concluded that it is possible to achieve different 

separation objectives by using either laser, colour or XRT sensors. The XRT sensor 

provides good separation of the lithium minerals from mica, shale, schist, feldspar, 
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amphibolite and gabbro. The laser and colour combination presents a better separation 

between lithium minerals and quartz. In this sense, the best results can be achieved as a 

combination of the three sensors, depending on the ROM and lithologies.  However, in 

the cases presented here, it is possible to reject all contaminating lithologies, generating 

a concentrate of spodumene and/or petalite with high purity. Both separation criteria can 

be combined and adjusted to maximize lithium purity and/or recovery, according to the 

defined separation objectives. 

Based on this multi sensor approach, 6t of sample were tested at different size ranges, 

multiple feed grades and ore compositions. Table 3 summarizes the characteristics of the 

test material. 

Table 3 - Characteristics of lithium pegmatite ore separated with multi sensor approach  

Characteristic Unity Min Max 

Particle Size mm 6,0 100,0 

Feed grade 
Li2O% 1,0 5,5 

Fe2O3% 1,0 3,5 

Product grade 
Li2O% 1,2 5,9 

Fe2O3% 0,4 0,8 

Waste grade 
Li2O% 0,1 2,9 

Fe2O3% 2,9 11,9 

 

The relation between mass pull, Li2O recovery and Li2O upgrade are shown in Figure 13  

and Figure 12. Another quantitative measure of assessment is the upgrade or enrichment 

rate, this is the ratio between the product grade after SBS is applied and the original feed 

grade. Based on Figure 13 and Figure 12 it is possible to note that operating at smaller 

mass recoveries favours higher upgrades, which can mean an elevated upgrade rate. On 

the other hand, operating at elevated mass recoveries generating higher Li2O recoveries, 

up to 90%. The two graphs (Figure 13  and Figure 12) can be utilized to determine an 

optimized operating envelope that takes into consideration the aforementioned factors. 

The generated data can also be utilized for economic and sustainability evaluations of 

different operational points in a project.  
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For example, a defined operational range can be selected to increase the feed grade of a 

beneficiation plant, thus making low grade deposits viable. Another possibility would be 

to upgrade concentrate material generated at coarser fractions (> 6,5mm). In this sense, 

Table 3 indicates the possibility to achieve Li2O grades up to 5.9%. This grade is at the 

level of final product concentrate of brines and spodumene (Drobe, 2020). This 

potentially indicates the possibility to apply SBS for obtaining a final product at this size, 

with the advantages of eliminating DMS, grinding and flotation stages. Other outcomes 

include a significant reduction of iron content in the product (concentrate).  

 

A very consistent trend can be observed in the results across various orebodies and tests. 

This is a result of the multiple possibilities generated by sensor combination.  

5.2.NIR 

Although Spodumene is the more commercially viable lithium bearing minerals, not all 

lithium pegmatite orebodies contain appreciable amounts of spodumene. Furthermore, in 

some instances appreciable atomic density differences are simply not present in the ore 

to allow for sorting using XRT. For this reason, an approach to a petalite rich orebody 

has also been explored.  

 

Figure 13 – Relation between mass pull and Li2O 
upgrade with multi sensor separation 

 

Figure 12 - Relation between mass pull and Li2O 
recovery with multi sensor separation 
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Tests were conducted using a Near Infrared sensor sorter with Hyper Specral imagining 

(NIR-HSI). All work was conducted on a conveyor belt system at 3m/s at equipped with 

a line scanner with a spectral resolution of < 3nm.  

 

Samples from a Li-bearing Pegmatite orebody formed part of the bulk sorting campaign. 

The lithium minerals included; petalite, amblygonite, cookeite as well as some Li-

containing Muscovites. Quartz and Feldspar formed the balance of the orebody. Figures 

14, 15 and 16 represent the NIR images and classifications of the scanned samples. Figure 

15 shows the classified false colour image per pixel identified in each sample. This 

demonstrates on a granular level the classification of each object. On this basis 

appropriate boarders can be set as well as prioritization of minerals in order to provide 

the final valve mirror image in Figure 14 

 

In Figure 15 each pixel follows down a decision tree path until the entire object is 

classified as a single mineral type shown in Figure 14. The de facto criteria for sorting is 

either to “eject” or “drop” a sample, in order to carry out this sorting operation the valve 

mirror images are required to classify a whole sample as one or another mineral. For 

characterisation purposes however, we look to the false colour images in Figure 15 for 

the mineralogical classification. For this reason, the NIR sorting system can also provide 

a quantified analysis of the various minerals classified as demonstrated in Figure 17 

 

 

Figure 17: (LEFT) - False colour image of pixel classification. (RIGHT) - Valve mirror image of object 
classification 

Figure 16: Sample scans - NIR 
image 

Figure 14: Classified valve mirror 
image 

Figure 15: Classified false colour 
image 
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The requirements for the testing campaign was to concentrate as much lithium (Li2O) in 

approximately 30% of the mass as possible with a clear focus on achieving as high an 

upgrade as possible. The results of the bulk testing campaign are presented in Table 4 

Table 4: Feed grade of bulk samples tested along with achieved upgrade rates through NIR-HSI sorting  
Sample 1 Sample 2 Sample 3 Sample 4 

Feed grade (mg/kg) 0,94 0,96 0,66 0,73 

Upgrade rate (x times) 1,3 1,4 1,2 1,5 

Upgrade rate (%) 32% 36% 22% 51% 

 

The average grade of the samples was 0,82% Li2O  and upgrade rates from 22% to 50% 

were achieved. Working within the confines of the mass pull requirements, we see the 

impact of mass pull on recovery, demonstrated in Figure 19. Increasing the mass pull 

would provide the opportunity to increase the Li2O recovery, however conversely given 

the waste grades presented in Figure 18 this would also result in the dilution of the 

product.  

 

 

 

 

 

 

 

 

 

 

 

Fe2O3 grades were also evaluated, however, the orebody demonstrated no more than 

0,40% Fe2O3 on average with the highest measured value in one sample at 2,81and an 

standard deviation of around 0,32%. As such Fe2O3 was not considered as pertinent to the 

NIR findings. With the reported average grades of lithium bearing pegmatite orebodies 

being anywhere between 1,5 - 4,0 % Li2O the opportunity to achieve economically viable 

grade of Li2O become increasingly important.  
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Figure 19: mass pull vs LiO2 recovery Figure 18: product and waste grades at varying mass 
pulls  
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6. CONCLUSIONS 

 

Lithium ores vary in their compositions from ore body to ore body. Pre-beneficiation thus 

requires adaptable techniques to detect multiple characteristics of materials in order to 

separate lithium-bearing rock and waste material.  

 

A total of approximately twelve tons of different lithium ores from Southern Africa, South 

and North America were tested at different size ranges, multiple feed grades, and ore 

compositions. The Li-minerals consisted of cookeite, petalite, spodumene and lepidolite. 

Waste rock minerals varied from feldspar, quartz, schist, gabbro, muscovite, basalt, and 

amphibolite. The separation results indicate that the multi sensor approach allows for 

consistent results at different mineral compositions. This was observed in the relations 

between mass recovery, upgrade factor and Li2O recovery. Based on the results, it can be 

concluded that different sensor solutions need to be applied to maximize the separation 

results of ores with multiple mineral compositions.  

 

To summarize, beneficiation of coarser size fractions provides several factors enhancing 

a mine’s processing efficiencies, energy/water reduction, cost savings and at the same 

time improving the ESG performance. The more waste rock that is removed before the 

mill, the more energy is saved, feed-grade improved and controlled, which vastly 

improves the downstream wet processing of Lithium. Waste rock sorting also provides 

an opportunity to utilize additional separation stages to produce clean waste rock fractions 

as secondary products. From the sorting results achieved for other lithologies, it is 

possible to generate by-products such as high purity quartz or feldspar using different 

sensor combinations. Some mines have already embarked on a zero-waste mining 

program which utilize flexible multi-sensor sorting programs to produce sellable products 

for all their material mined. Finally, the high grade and coarse lithium mineral concentrate 

achieved through SBS can potentially progress directly to the lithium conversion process, 

without the need for other wet downstream process. 
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