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HIGHLIGHTS

e Applicability of SBS on various lithium pegmatite ores
e Improved energy and water usage by coarse gangue rejection with SBS

¢ Reduction on waste generation with by-products concentration with SBS

ABSTRACT

The clean energy transition presents a direct impact on the increasing demand for critical
metals, amongst these is lithium. At the same time the minerals industry faces the need
for improvement, and must meet growing sustainability targets and evolving standards of
ESG policies. Therefore, itis necessary to develop process routes that make it possible to
address the aforementioned demands. The present work demonstrates the applicability of
sensor based sorting (SBS) technology for the processing of lithium pegmatite ores. For
this, a test methodology commonly used in the initial stages of evaluation, which provides
a better understanding of the separability between the most common lithologies in lithium
pegmatite ores, is presented. This work offers a framework on which to evaluate the
sortability of lithium pegmatite ores with a focus on achieving ESG goals. Using a multi-
sensor platform approach provides flexible solutions to decrease the carbon footprint of

existing processing routes.
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Decarbonization.
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1. INTRODUCTION

The global energy transition places a higher demand on the mining and minerals
processing industry. For instance, the transition by automotive manufacturers to electric
vehicles (EV’s) is associated with an almost six-fold higher requirement on minerals
inputs when compared with conventional vehicles (IEA 2021). Similarly, off-shore wind
generation requirements command nearly nine times the mineral input compared to
current gas-fired power stations (Michaux 2021; IEA 2021). Considering these growing
demands on the mining and minerals processing industry, significant efforts need to be
made to support this expanding sector in a sustainable and environmentally conscious

way.

Major mining companies are aligning environmental, social and governance (ESG)
commitments to their portfolios as they address the sustainability and social impact of
their investments. In this context, stakeholders demand more ESG-oriented policies. The
way mining organisations allocate the capital expenditure across their assets could have
a decisive effect on their competitive advantage over the next decade. According to Stoch
and Desai (2022), miners need to convince their investors on how they are positioning
their assets for the long term.

According to the Deloitte report authored by Davidse et al., 2016, energy is one of the
biggest expenses for mining companies, constituting approximately 30% of total cash
operating costs. The most direct and impactful portfolio is one that focuses on energy-
management related projects that have clear economic returns. At the same time, the
reduced grade of the available mineral resources demand for processing more tons of
material. This results in a significant increases on the total energy consumption. The
minerals industry is currently tackling this challenge by developing new comminution
technologies, improving process controls, and also implementing waste rock removal at
coarser grain sizes. Coarse gangue rejection is also known as preconcentration and
consists on of eliminating material without valuable metal content, prior to high energy
intensity grinding stages. The preconcentration stage can be implemented in the form of
many different technologies, which can be selected based on the technology’s

capabilities, orebody suitability and economic viability (Valery, etal., 2020). Ballantyne,



et al. (2018) assessed the energy efficiency of preconcentration through SBS for a gold
and chromite ore, thus concluding that energy savings are in the order of 6% to 11%.
Esteves, et al. (2023) proposed the evaluation of SBS for the preconcentration of a
polymetalic ore, thus resulting in a reduction of: 44% on specific water usage (m?/t), 34%

on specific energy consumption (kWh/t) and 43% on fine waste generation.

In addition to the energy usage, the waste generation is also an important challenge in
mining. Considering the number of catastrophic tailings dam failures experienced in
recent decades, the risks are not only environmental but also increasingly deadly (W ISE
2023). In thissense, Valentaet al., 2023 considered several strategies aimed at improving
resource efficiency, whilst reducing mine waste generation. Reprocessing,
desulphurisation, dry stacking, preconcentration, sand co-production and in-situ recovery
are pointed as alternatives to mitigate the waste impacts while minimizing the disposal
hazards. Also highlighted in their study is importance of understanding the site-specific
characteristics when defining suitable technologies and/or alternatives at different mining

operations.

Water is rapidly becoming a scarce resource in many parts of the world. It will be
important to develop processes that require less water and reduce the amount of fine

slimes waste material which is store in tailings dams.

Existing and future mining projects will have to address ESG targets which will require
implementing new flowsheet designs and new or improved technologies to develop
Climate-Smart processes.

2. BACKGROUND

As one of the most critical metals to the EV market, the demand for lithium is growing
exponentially. This paper focuses on preconcentration techniques for lithium ores which

will impact portions of ESG aspects.

Lithium is primarily found in two major sources, lithium brines and hard rock pegmatite

orebodies (Drobe 2020). The largest lithium deposits are encountered in brine sources,



which are basically saltwater deposits in the form of lakes, salars and geothermal brines
mainly encountered in Chile, Argentina, Bolivia, USA, and China (Morh et al., 2012).
Although lithium brine sources correspond to approximately 87% of lithium reserves, it
Is suggested that the environmental, safety risks and occupational health hazards
associated with lithium brine extraction can be much larger than for lithium bearing
pegmatite ores (Agusdinata, etal., 2018). In addition to this, it is also suggested that salars
are paleolakes structures with rich microbiological ecologies that contains memories of
past life on Earth, which could be disrupted by the intensity of mining activities (Bonelli
& Dorador, 2021).

Alternatively, over the past six to eight years there has been a marked increase in interest
in hard rock lithium deposits. The lithium minerals are usually encountered in pegmatite
deposits which can present large mineralogical variations. More than one hundred
minerals are listed from the Tango Pegmatite deposit, including native elements,
sulphides, oxides, phosphates, carbonates, borates, and silicates (Garret, 2004). Some of
the lithium minerals encountered include; spodumene, lepidolite, petalite, cookeite,
elbaite, rossmanite, holmquistite and others, while accompanying minerals and rocks
types include basalt-gabbro, mica, quartz, feldspar, albite, muscovite, calcite, schist and
dolomite (Garret, 2004). This vast diversity in lithium pegmatite mineralised deposits,

will require different ore-specific concentration flow sheets.

This study only considers Li-pegmatite ores within the context of mineral beneficiation
(as explained in Tadesse et al., 2019), not lithium extraction or the formation of lithium
compounds (e.g., carbonate, sulphate or hydroxide) (as explained in Gao et al., 2023).
Conventional mineral beneficiation techniques for Li-pegmatite ores include dense
medium separation (DMS), froth flotation and magnetic separation (Tadesse et al., 2019;
Kundu et al., 2023). Both DMS and froth flotation require the introduction of process
water as a medium to facilitate the separation. Inalmost all instances where process water
Is introduced, tailings, or some form of fines slurry wastes are generated. DMS and froth
flotation are applied on relatively fine feed material (e.g., <4mm being typical for Li-
pegmatite ores). Sensor based sorting (SBS), as implemented in various applications

(Robben and Wotruba, 2020), presents the opportunity to reject barren waste and/or very



low-grade lithium material prior to size reduction for DMS, froth flotation and magnetic
separation.

In this sense, Aijala (2018) proposed a multi sensor approach, including color, NIR, laser
and XRT sensors for the estimation of a sorting index that represents an estimation of
rock dilution for lithium pegmatite ores. The test was performed at bench scale and a SBS
test program was recommended. More recently, Filippov, et al.,2022, proposed the
evaluation of optical sorting for the preconcentration of a lithium pegmatite ore in
Portugal, thus concluding that the coarse-grain texture of the lepidolite allows for gangue
liberation at coarse sizes. It was suggested that the optical sorting also allows for the
production of a feldpspar-quartz product with suitable characteristics for the ceramic
industry. Esteves, et al., 2022, proposed a multi sensor approach for different lithium
pegmatite deposits encountered in Brazil. Although it was concluded that a combination
of laser, XRT and color sensors could be applied to separate spodumene and petalite, the
possible separation results were not evaluated in terms of grades and recoveries. In
relation to this multi sensor approach, Peukert, et al., 2022, also indicated that greater

sensor fusion offers the potential for an improved ore classification and sorting efficiency.

3. OBJECTIVE

A diverse selection of lithium pegmetite ore samples from different deposits around the
world were provided for this study. Since numerous case studies featuring SBS have been
presented in literature for other minerals, the authors believed it would be pertinent to
present the methodologies developed to assess the amenability of lithium pegmatite ores
to SBS. It is also important to demonstrate that different sensor technologies are required
to treat different ore bodies, due to the diverse nature of lithium pegmatite minerals.
Experience has shown that a “one size fits all”” approach is not suitable for all lithium ore
types. This paper also aims to demonstrates the opportunity to remove a significant
portion of coarse waste material SBS. This will result in energy, water and therefore cost

savings which could incentivize mining companies to consider such alternatives.



4. MATERIALS AND METHODS

Twelve tonnes of ores originating from different lithium pegmatite deposits across three
continents, were submitted for Amenability Testing. Although all deposits are
characterized as lithium pegmatite orebodies, they represent differentlithium occurrences
and mineralization that can be encountered in various regions across the globe. In this
sense, the lithium bearing minerals do vary, as do the main contaminates (gangue)
present. By testing different mineral compositions, it is possible to obtain a broad
understanding of how different sensor technologies can be utilized to process lithium

pegmatite ores, in a general and global perspective.

Spodumene, cookeite, lepidolite and petalite are the main lithium bearing minerals
considered in this study. The other lithologies commonly associated with lithium deposits

are described in Table 1.

Table 1 - Properties of minerals occurring in lithium pegmatite ore

Mineral / Rock Description Specific Density Li>O (%) theoretical
X (Si, Al)4 Og
Feldspar X(: K, N)a Ca 25t02,8
Quartz Si02 261t02,7
Schist Metaphorphic 2,7t03,2
X2Y4—62Z8020(0OH, F)4
. X= K, Na or Ca
Mica Y = Al, Mg or Fe 2,81t03
Z=SiorAl
Amphibolite Metamorphic 2,9t03,6
Gabbro Igneous 2,7t03,3
Spodumene Li AI(Si206) 3t03,2 8
Petalite Li Al(Si4010) 2,3t02,5 49
Cookeite LiAlsSizO10(OH)s 2.58 t0 2.69 2,86
Lepidolite K(Li,Al)3(AlSi,Rb)4010(F,0H), 2.8-2.9 77

4.1.SBS: AMENABILITY TEST

The Amenability Test (AT) is performed as an initial evaluation for determining the
sorting applicability. The test requires calibration samples that are used for
characterisation and settings development. The calibration samples are scanned with
different sensors and the sensor response is then used to develop a separation setting for

the application. The setting and sensor response can be used to simulate materials



separation to obtain an initial assessment of the sorting task. The test procedure is

summarized in Figure 1.

Scan with Set_tings
Samples multiple creation and
Preparation P separation
B simulation

Figure 1 - Flowsheet of Amenability Test (AT) methodology

The first stage for the test is to prepare the samples, which can be defined as Calibration
samples (CS). The setting adequacy relies on the quality of the initial assessment of the
CS, which consists of groups of different rocks according to pre-determined/known
characteristics, such as grade range or lithology. The table below provides some examples
of calibration samples specifications. The size fractions for the calibration samples should
be in accordance with the size ranges of material to be sorted. The amount of CS can be

defined in terms of a minimum amount of mass or quantity of particles.

Table 2 — Calibration samples (CS) examples

CS examples Size fraction Amount of rocks
High-grade sulphides - 25mm +10mm 10kg / 50 pieces
Low-grade - 25mm +10mm 10kg/ 50 pieces
Waste rock type 1 e.g. schist -75mm+25mm 30kg/ 50 pieces
Waste rock type 2 e.g. andesite -75mm+25mm 30kg/ 50 pieces

Table 2 shows an example of CS for a copper project. In this example, the copper
mineralization consists of chalcopyrite and the high-grade samples are mainly composed
of massive sulphides. The medium grade material is chalcopyrite inclusions entrained in
gangue material, the low-grade material is very disseminated sulphides and, the, waste
material is mostly gangue. The samples are generally handpicked by a geologist, and thus,
all the individual particles provide similar characteristicsaccording to the categorization.

The next test stage consists of scanning the CS with multiple sensor technologies. For the
proper evaluation of surface characteristics, it sight may be necessary to provide proper
surface preparation of the samples, which can include washing prior to scanning. The
sensor responses are used to create a customized sorting setting, as defined by the test
targets. Complex separation applications require more than one sensor to identify and



distinguish between different minerals or rock types: For example, XRT can identify the
atomic density of dense sulphide minerals locked within a rock, and laser reflection
propertiesare utilised to identify quartz. This quartz-vein gold sulphide type deposit can
thus be effectively sorted by utilising the XRT/laser sensor combination. However, not
all applications may have this multi-sensor requirement, as this study will show. The
setting is used to simulate what would be the separation decision for each calibration
group. Figure 2 shows the separation simulation for the different copper calibration
samples presented in Table 2. The x axis represents a threshold for the sensor and the y
axis represents the material separability. The analysis can be performed for different
sensor selections. In the presented example, by selecting a threshold of 0.4, the following
materials are recovered: 90% of the high grade, 39% of the mid grade, 14% of the low
grade and less than 1% of waste. This could be used as an operational point with a focus
on material upgrade, in this case favouring the recovery of high grade material while
minimizing low grade and waste material. When increasing the threshold, (moving from
left to right) the recovery begins to increase. Conversely, by decreasing the threshold
(moving fromright to left) the upgrade is favoured over recovery. In summary, the results
generated by AT can be used to evaluate separability of different materials, such as to
select the best sensor/s for the separation.
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Figure 2 - Separation setting example for AT

4.2. SENSOR TECHNOLOGIES

Various different sensors have been applied in SBS for ores over the years, these include
transmissive technologies such as x-ray transmission (XRT), surface based technologies

such as near infrared (NIR), x-ray fluorescence (XRF) and colour detection. This study

8



specifically examines the sensor technologies which have most recently been applied to
the testing and commercial processing of lithium pegmatite ores.

4.2.1. Near Infrared (NIR) spectroscopy for minerals

Near infrared (NIR) is a spectroscopic technique which relies on the unique absorption of
light in the NIR range by molecules. This absorption occurs as a result of the interaction
between photons and the molecules of the specimens being observed. Specific
wavelengths cause molecules to oscillate whilst the remaining radiation is reflected and
detected by a camera unit and/or other detectors. This measured response provides a
spectral signature which can uniquely identify the minerals responsible for the absorption
(Robben 2010).

Various authors define the NIR wavelength range differently nevertheless this range can
be anywhere from 780nm — 2500nm (Clark 1999; Robben and Wotruba, 2010; Robben
2017). Importantly are the known-absorption bands of various molecules within the
wavelength range which make the identification of certain minerals possible. Figure 3

shows two spectra of Li-Pegmatite specimens for Lepidolite and Muscovite.
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Figure 3: Spectral plot of muscovite (green) and lepidolite (blue) from a field
spectrometer (Courtesy of Spectral evolution)

We see the major behavioural bands where we expect the interaction of various molecules
also shown in Figure 3. Not all minerals are active in the NIR wavelength range, iron (Fe)
has shown to have strong absorption in the NIR range, which could provide some

indication of why sulphides are difficult to detect within this range. However, minerals



that have some structural presence of H20, OH-, NH4, and carbonates (CO3) have all
demonstrated strong NIR detectability (Shanker, 2015).

Differences between the two spectra at one or several points within these absor ption bands
allow for the mathematical distinction between the spectra and provide a separation

criteria for sensor based sorting.

4.2.2. Dual Energy X-Ray transmission (De-XRT) for minerals

The working principle relies on the absorption of x-rays transmitted through objects. The
density, molecular structure and thickness of the objects all contribute to whether the
radiation is partially or completely absorbed. An x-ray source is located on one end of the
object, whilst detectors also such as scintillators are located on the opposing end. Photons
are radiated with a defined intensity and these travel through the material and are
transmitted on the opposite side, where they are measured by the detectors. The difference
between the incidental radiation and measured radiation is equal to the absorption, which

allows conclusions about atomic density of the measured material to be made.

The dual energy principle is used to compensate for differences in material thickness. A
sandwich board detector provides the possibility to measure the transmitted radiation on
two energy levels. Such a detector essentially consists of two detectors separated by a
thin metal film, allowing for two measured values. High energy (HE) and Low energy
(LE). Depending on the belt speed, and hardware selection of the x-ray tube and detectors,
a certain pixel resolution can be achieved. The information from the scanned objects is
translated to a scatterplot of pixels displayed on two axis. Each pixel consist of a HE
transmission and LE transmission values which are plotted on a scatterplot similar to

Figure 4.

Figure 4 demonstrates the visual interpretation of De-XRT principle with two distinct
curves showing high and a low dense materials. Heavy elements are expected on the upper
curve, while elements with a lower densities can be found on the lower curve. In this
diagram an area of interest is defined, which allows a mapping of every single pixel

recorded and thereby allocation it to a material class for the purposes of sorting.
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Figure 4: Visual interpretation of De-XRT where the x- and y-axis show percentage of
transmitted radiation of the LE and HE detectors, respectively.

In the context of this paper, material was scanned on a conveyor belt at 3m/s with the
source (x-ray tube) located below the belt and the detectors above. The signal processing
of each pixel is classified according to the area of interest defined in the DE-XRT diagram
and on this bases each scanned object can then be displayed as a classified “False colour

image” as shown in Figure 5.
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Figure 5: De-XRT signal interpretation
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4.2.3. Visible light separation (VI1S) techniques for minerals

Optical colour sorters have been employed across various industries such as; food
processing, recycling and minerals processing. The visible light spectrum is located
between the ultra-violet (UV) and infrared (IR) range (400nm- 700nm). Similar to other
surface based detection principles, colour sorting relies heavily on the cleanliness and
visibility of the materials surface in order to provide an accurate measurement of the
colour characteristics. The principle works on the red green and blue (RGB) colour cube
with three main primaries and an evolution of these as demonstrated in Figure 6. The
model works by adding the three primary colours together to achieve different colours.
Each measured pixel of a cameradenotes a particular point on the cube and depending on
that position a particular colour is recognised. The resolution of the detecting camera

plays a critical role in determining how many different colours can be recognised.

R

Figure 6: RBG colour cube (www.javatpoint.com/introduction-to-color-spaces)

Light illuminates the surface whilst a camera placed at a specific position away from the
object detects the various colours and plots these at various points on the RGB scale.
Calibration samples are usually scanned in this case as well allowing for a reference scale
to be developed, similar to the scale presentedin Figure 2. This scale is generally used as
a measurement against which sorting material is compared against. Depending on the
colour scale for a specific group of material against the developed calibration scale, this
material can either be “ejected” or “dropped” in the sorting operation, whilst the
sensitivity can be adjusted in accordance with the threshold previously described for

Figure 2.

Laser scattering, brightness also fall within the context of VIS technologies however

utilizing a visible laser line and camera detection system. Based on the surface
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characteristics of certain minerals such as quartz, the translucent appearance of the
crystalline structure allows for a significant scattering or dispersion of a laser beam when
focused on its surface. This response can be detected by a camera/s and interpretated as a
criteriafor separation. Figure 7 shows 4 particles from a lithium pegmatite ore body with

different degrees of surface oxidation and presence of quartz and feldspar.

Figure 7: (LEFT) Colour camera image (MIDDLE) Laser width. (RIGHT) Laser brightness

4.2.4. Effect of particle presentation

In addition to the physical properties, particle presentation also has a direct effect on the
sensor classification. While XRT is a transmissive technology, NIR, laser and colour
camera only perform surface measurements of the particles.

Figure 8 shows a rock with cookeite and petalite crystals. In the case of surface detection,
it is important that the crystals are shown towards the direction of the sensor, so they can
be seen and detectable.

In the case of XRT, the surface characteristics are not a measurement parameter, since it
is a transmissive detection. However, the direction of the particle can have an effect on
the measurement. This can be better understand in terms of the x-y-z axis. By taking XRT
scans across these different axis’ this can result in variations in the absorption patterns,
depending on the structure of the mineralization. This is a result of the variations on the
crystal position in terms of the direction of the measurement. Based on that, it can be
concluded that particle presentation is directly affected by all sensors measurements and
need to be properly take into account during test work.

13



Cookeite and petalite
. large crystals

Figure 8 — Particle with cookeite and petalite large crystals

5. RESULTS AND DISCUSSION

CS from the different lithologies were submitted for AT. The samples were scanned using

the following equipment:

. Steinert KSS XT CLI: XRT, colour camera, laser and induction

° Steinert KSS NR CLI: NIR, colour camera, laser and induction

The AT was performed to generate separation settings that were later applied in a
separationtest. The sensors used were XRT, laser, colour and NIR. The obtained results

are shown in the next sections.

5.1.XRT + LASER + COLOUR

Figure 9 shows the colour and XRT images for different lithologies commonly
encountered in lithium pegmatite ores. For the XRT image, darker tones indicate a higher
absorption pattern, while lighter colours are associated with lower absorption. The XRT
absorption is related to the atomic density of the particles. In this sense, light colours
should be associated with smaller atomic densities for a particle.

The lithium minerals found are mainly composed by light elements, such as Li, Al and
Si. In this sense, lighter shades are observed for the lithium minerals thus indicating a low
absorption pattern. Although some of the lithium minerals present higher specific
densities, such as spodumene, in the XRT pattern they are detected as low-density
material. This is due to the fact that XRT measurement is based on atomic density, rather

than the specific density.
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Figure 9 - Images obtained through the colour sensors and XRT.

The difference in the absorption pattern of the samples can finally be utilized to simulate
the separability. The curves shown in Figure 10 show the separation curves obtained for
XRT sensor. The x-axis indicates the separation criteria, which can be adjusted for greater
recovery or purity. The y-axis indicates the separability of the samples, as a percentage.
For example, an adjustment of the XRT threshold at 0.6 provides the rejection of
approximately 100% of Feldspar, Schist, Mica, Amphibolite, Gabbro, and virtually no
rejection of Quartz, Petalite, and Spodumene. Selecting this threshold, allows to generate
a material with high content of petalite, spodumene and quartz, while other lithologies

are almost completely rejected.
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Figure 10 - Separation chart for XRT sensor.

In a different approach, the colour camera is capable of detecting different shades among
the samples. In addition to that, the laser detects both shape and surface properties. The
laser and colour sensors were combined to generate a separation curve, shown in Figure
11. The interpretation of the curve can be done on the same way as for the XRT. For
example, a threshold of 0.95 results in a rejection of over 90% for Quartz, Feldspar,
Schist, Amphibolite and Gabbro, with a rejection around 20% for Spodumene and

Petalite, and virtually no rejection for Mica.
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Figure 11 - Separation chart for colour separation.

This separation criteria can be adjusted to higher values, resulting in higher purity and
lower recovery of lithium minerals. Conversely, the use of smaller thresholds results in
higher recovery of lithium minerals with reduced contamination, especially by quartz.

Based on the graphs evaluation, it can be concluded that it is possible to achieve different
separation objectives by using either laser, colour or XRT sensors. The XRT sensor

provides good separation of the lithium minerals from mica, shale, schist, feldspar,
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amphibolite and gabbro. The laser and colour combination presents a better separation
between lithium minerals and quartz. In this sense, the best results can be achieved as a
combination of the three sensors, depending on the ROM and lithologies. However, in
the cases presented here, it is possible to reject all contaminating lithologies, generating
a concentrate of spodumene and/or petalite with high purity. Both separation criteriacan
be combined and adjusted to maximize lithium purity and/or recovery, according to the
defined separation objectives.

Based on this multi sensor approach, 6t of sample were tested at different size ranges,
multiple feed grades and ore compositions. Table 3 summarizes the characteristics of the

test material.

Table 3 - Characteristics of lithium pegmatite ore separated with multi sensor approach

Characteristic Unity Min Max
Particle Size mm 6,0 100,0
Li20% 1,0 55
Feed grade ! °
Fe203% 1,0 35
Li20% 1.2 59
Product grade ! °
Fe203% 0,4 0,8
Wast d Li20% 0,1 29
aste grade
g Fe203% 2.0 11,9

The relation between mass pull, Li,O recovery and Li>O upgrade are shown in Figure 13
and Figure 12. Another quantitative measure of assessment is the upgrade or enrichment
rate, this is the ratio between the product grade after SBS is applied and the original feed
grade. Based on Figure 13 and Figure 12 it is possible to note that operating at smaller
mass recoveries favours higher upgrades, which can mean an elevated upgrade rate. On
the other hand, operating at elevated mass recoveries generating higher Li,O recoveries,
up to 90%. The two graphs (Figure 13 and Figure 12) can be utilized to determine an
optimized operating envelope that takes into consideration the aforementioned factors.
The generated data can also be utilized for economic and sustainability evaluations of

different operational points in a project.
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Figure 13 — Relation between mass pull and Li.O Figure 12 - Relation between mass pull and Li-O
upgrade with multi sensor separation recovery with multi sensor separation

For example, a defined operational range can be selected to increase the feed grade of a
beneficiation plant, thus making low grade deposits viable. Another possibility would be
to upgrade concentrate material generated at coarser fractions (> 6,5mm). In this sense,
Table 3 indicates the possibility to achieve Li>O grades up to 5.9%. This grade is at the
level of final product concentrate of brines and spodumene (Drobe, 2020). This
potentially indicates the possibility to apply SBS for obtaining a final product at this size,
with the advantages of eliminating DMS, grinding and flotation stages. Other outcomes

include a significant reduction of iron content in the product (concentrate).

A very consistent trend can be observed in the results across various orebodies and tests.

This is a result of the multiple possibilities generated by sensor combination.

5.2.NIR

Although Spodumene is the more commercially viable lithium bearing minerals, not all
lithium pegmatite orebodies contain appreciable amounts of spodumene. Furthermore, in
some instances appreciable atomic density differences are simply not present in the ore
to allow for sorting using XRT. For this reason, an approach to a petalite rich orebody

has also been explored.
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Tests were conducted using a Near Infrared sensor sorter with Hyper Specral imagining
(NIR-HSI). All work was conducted on a conveyor belt system at 3m/s at equipped with

a line scanner with a spectral resolution of < 3nm.

Figure 16: Sample scans - NIR Figure 15: Classified false colour Figure 14: Classified valve mirror
image image Image
Samples from a Li-bearing Pegmatite orebody formed part of the bulk sorting campaign.
The lithium minerals included; petalite, amblygonite, cookeite as well as some Li-
containing Muscovites. Quartz and Feldspar formed the balance of the orebody. Figures
14, 15 and 16 represent the NIR images and classifications of the scanned samples. Figure
15 shows the classified false colour image per pixel identified in each sample. This
demonstrates on a granular level the classification of each object. On this basis
appropriate boarders can be set as well as prioritization of minerals in order to provide

the final valve mirror image in Figure 14

In Figure 15 each pixel follows down a decision tree path until the entire object is
classified as a single mineral type shown in Figure 14. The de facto criteriafor sorting is
either to “eject” or “drop” a sample, in order to carry out this sorting operation the valve
mirror images are required to classify a whole sample as one or another mineral. For
characterisation purposes however, we look to the false colour images in Figure 15 for
the mineralogical classification. For this reason, the NIR sorting system can also provide

a quantified analysis of the various minerals classified as demonstrated in Figure 17

B recsoar 48px 11.0% B reos0e 644 px 238%
[l PetaiceCookite 111px 254 % [l PetaieCookite 835 px 30.8 %
D Quartz 99 px 22.7 % D Quartz 408 px 15.1

. Muscovite 109 px 2497% - Muscovite 600 px 2.1%

Figure 17: (LEFT) - False colour image of pixel classification. (RIGHT) - Valve mirror image of object
classification
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The requirements for the testing campaign was to concentrate as much lithium (Li2O) in
approximately 30% of the mass as possible with a clear focus on achieving as high an

upgrade as possible. The results of the bulk testing campaign are presented in Table 4

Table 4: Feed grade of bulk samples tested along with achieved upgrade rates through NIR-HSI sorting

Sample1l | Sample 2 | Sample 3 | Sample 4
Feed grade (mg/kg) | 0,94 0,96 0,66 0,73
Upgrade rate (x times) 1,3 1.4 1,2 15
Upgrade rate (%) 32% 36% 22% 51%

The average grade of the samples was 0,82% Li,O and upgrade rates from 22% to 50%
were achieved. Working within the confines of the mass pull requirements, we see the
impact of mass pull on recovery, demonstrated in Figure 19. Increasing the mass pull
would provide the opportunity to increase the Li,O recovery, however conversely given

the waste grades presented in Figure 18 this would also result in the dilution of the

product.
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Figure 19: mass pull vs LiOz recovery Figure 18: product and waste grades at varying mass

pulls

Fe.O3 grades were also evaluated, however, the orebody demonstrated no more than
0,40% Fe,O3 on average with the highest measured value in one sample at 2,81and an
standard deviation of around 0,32%. As such Fe;O3 was not considered as pertinent to the
NIR findings. With the reported average grades of lithium bearing pegmatite orebodies

being anywhere between 1,5 - 4,0 % Li,O the opportunity to achieve economically viable
grade of Li,O become increasingly important.
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6. CONCLUSIONS

Lithium ores vary in their compositions from ore body to ore body. Pre-beneficiation thus
requires adaptable techniques to detect multiple characteristics of materials in order to

separate lithium-bearing rock and waste material.

Atotal of approximately twelve tons of different lithiumores from Southern Africa, South
and North America were tested at different size ranges, multiple feed grades, and ore
compositions. The Li-minerals consisted of cookeite, petalite, spodumene and lepidolite.
Waste rock minerals varied from feldspar, quartz, schist, gabbro, muscovite, basalt, and
amphibolite. The separation results indicate that the multi sensor approach allows for
consistent results at different mineral compositions. This was observed in the relations
between mass recovery, upgrade factor and Li,O recovery. Based on the results, it can be
concluded that different sensor solutions need to be applied to maximize the separation

results of ores with multiple mineral compositions.

To summarize, beneficiation of coarser size fractions provides several factors enhancing
a mine’s processing efficiencies, energy/water reduction, cost savings and at the same
time improving the ESG performance. The more waste rock that is removed before the
mill, the more energy is saved, feed-grade improved and controlled, which vastly
improves the downstream wet processing of Lithium. Waste rock sorting also provides
an opportunity to utilize additional separation stages to produce clean waste rock fractions
as secondary products. From the sorting results achieved for other lithologies, it is
possible to generate by-products such as high purity quartz or feldspar using different
sensor combinations. Some mines have already embarked on a zero-waste mining
program which utilize flexible multi-sensor sorting programs to produce sellable products
for all their material mined. Finally, the high grade and coarse lithium mineral concentrate
achieved through SBS can potentially progress directly to the lithium conversion process,

without the need for other wet downstream process.
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